

23rd National Award for Excellence in Energy Management 2022

Award for 2022

NTPC Ramagundam (an ISO 50001 Certified station)

Our Mission:

'To Provide Reliable Power & related solutions in an Economical, Efficient & Environment friendly manners driven by Innovations & Agility"

EnMS Objectives: Providing the solutions for generating Efficient, Economical and Environment friendly Power with Operational Excellence through Systematic practices of Monitoring, Analysis and employing innovation Techniques

Presentation Team: Manoj Kr Jha, Energy Manager & Team leader, Mandeep Singh Lamba & M Vamsi Krishna; EnMS team

NTPC Ramagundam – Global footprint

NTPC Ramagundam received the Energy Management Insight Award for 2021 from the international Clean Energy Ministerial (CEM) forum under Department of Energy, United Nation Industrial Development Organization.

"This award recognizes organizations that have implemented energy management systems to achieve energy, economic, and sustainability benefits"

NTPC Ramagundam **received POWER MAGAZINE Award, USA**. This award recognizes diverse state-of-the-art technologies to address both unique and global challenges towards climates and economic environments

"For nearly four decades this plant has been essential power provider as it had added capacity over the years. Even as the plant ages, it has been setting new performance records thanks to technological & environmental upgrades"

Profile: NTPC Ramagundam

3

Installed Capa	city Configu	NTPC Ramagundam is	firmly guided by its	
Capacity	Capacity No of units Total Capcity			•
200 MW	3	600 MW	Core business	of power generation is
500 MW	4	2000 MW	intricately inter	twined with social and
10 MW Solar PV	1	10 MW	environmental gro	owth.
100 MW Floating Solar PV	1	100 MW	Generating relia	ible energy at competitive
Total Installed Capacity	263	10 MW	prices in a sustain	ied manner.
Upcoming Projects Capacity addition:			innovative & eco-	friendly technologies.
Capacity: 16 Commissioning	600 MW (2x8) by Oct' 22 8	00 MW) Mar' 23	The Brighter Plan 2032 Green Environment	the sponter come finite and the spontsible
Renewable Capacity addition and battery storage			Enriched life Waste minimization Circular Economy	Progressive Business
	Capacity		Total Safety	Leader
40MWh/10MW capacity Li-ion Battery Energy	40MWh/10MW capacity Li-ion Battery Energy storage system (BESS).		Diversity and Inclusion	
COD by March 2024.			Operational Excellence	
	· · · · · · · · · · · · · · ·			

National Award for 2022

- 26 August 2022

+ + + >

11.3

alle

· makint

PERFORMANCE FY 21-22

A . A .

Шh

i PA

<u>IIIII</u>

S No.		LINUT	FY 20)21-22
5 INO	PARAMETER		TARGET	ACHIEVED
1	Generation	MU	15444	17450
2	PLF	%	67.81	76.62
3	Declared Capacity	%	85.00	89.39
4	APC	%	6.88	6.81
5	Sp. Oil Cons.	ml/kwhr	0.50	0.262
6	Heat Rate	KCal/kWh	2399	2341
7	Boiler Efficiencies	%	86.6	86.86
8	Turbine Efficiencies	KCal/kWh	2077	2033
9	Raw Water Consumption	Ltr/kWh	3.5	3.21
10	DM Water Consumption	Ltr/kWh	0.07	0.067

×.

 \overline{T}

0

D::

. . + 4 7

National Award for 2022

Specific Energy Consumption – Last 3 years

Gross Heat rate (GHR): CERC Norms for RSTPS: 2399 kCal/Kwhr

Remarks:

• Improvement in GHR is mainly due to Implementation of HR improvement action plan through R&M of Unit#3 turbine in Dec 2022

•Major impact shall come in FY 2022-23

•The gross HR at the given PLF is in line of Manufacturer curve

-

Specific Energy Consumption – Last 3 years

Auxiliary Power Consumption (APC) CERC Norms for RSTPS: APC of 6.88%

APC of the station (6.75%) has marginally higher than PY (6.72%) because of limited works in OH of Unit 7 and U6 during covid thereby draft power increased by 2.2 MW
However at PLF of 76.62% the APC is less than the norms of 6.88%

Actions taken for improvement:

• Unit 7 major Duct works completed during OH in Aug 2022. Expected APC reduction of 3 MW

•U5/6 OH is planned in Nov-Dec 2022. Expected draft power reduction by 2 MW

Information on Competitors, National & Global benchmark

NTPC Ramagundam (RSTPS) has been the best performing station amongst its internal peers over the years

Roadmap to achieve benchmark

- <u>V</u> (010

	Expected UHR	Statio	n HR Impro	ovement	Heat Pate Improvement Action plan Poadman		
Action Plan Proposed	improvement	(Kcal/Kwhr)		Hear Kale Improvement Action plan Kodamap			
	(Kcal/Kwhr)	2021-22	2022-23	2023-24	2022-23	2023-24	
U#3 Mega R&M (Turbine upgradn)	189	14.54			Completed in Dec 21.		
U#2 Mega R&M (Turbine upgradn)	50		3.85		Turbine replacement with capacity of 210 MW (Nov'22 to Jan'23)		
U#1 Mega R&M, BIr OH & Chem cleaning	50		3.85		Completed in May 2022		
Augmentation of LP Economizer in one Stage-I unit. Expected Temp reduction by 15-20 deg C	15			1.15		Under SG R&M:package under approval. For one unit.	
Unit 7 BLR annual OH with NOX modification works	8		1.54		Unit Under OH (w.e.f 1 3.06.22)		
Unit 5 Overhauling (Boiler, LP/IP Turbine)	25		4.81		Dec-22		
Unit 6 Overhauling (Boiler, HP/IP Turbine)	24		4.61		Jan-23		
Unit 4 Overhauling (Boiler, Generator)	24			4.61		Dec-23	
Unit 3 Overhauling (Boiler)	12			0.92		Nov-23	
Total HR Improvement	397	14.54	18.86	6.68			

National Award for 2022 Excellence in Energy Management 2022

MAJOR ENCON PROJECT PLANNED IN 22-23

S	5.N	Particulars	Investment (Rs in Million)	Annual Electrical Savings (Million kWh)	Payback Prd (Yrs)	Target Date
	1	Reduction in draft power consumption after overhauling of Unit-7	0	14.45		Completed . Aug-22
	2	Replacement of Township conventional electrical fittings with energy efficient equipment	14.13	3.97 1.5		Oct-22
	3	Installation of Soft starters for CT Fans in Stage II Units	3	1.3	0.9	Mar-23
	4	Installation of Soft Starters for Stage-2 Bottom ash series pumps (8 PUMPS)	3.26	0.73	1.7	Feb-23
	5	Installation of VFD in ID Fan motors of 2 units of 500 MW	57	7.6	2.5	Mar-23

National Award for 2022 Excellence in Energy Management **2022** 23 - 26 August 2022

Energy Saving projects implemented in last three years

10

		Investme	Electrical	Savings	Deuleesk	C d	Cumulative Energy saving due to EC activities (MUs)		aving MUs)
FY	NO. OF Proposal	nt (In Rs. Millions)	Savings (in MUs)	(In Rs. Millions)	Payback Year	50 40 30		20.85	39.65
19-20	8	23.21	9.65	25.10	0.92	10 0 20	9.65	2020-21	2021-22
20-21	8	58.5	11.2	27.12	2.16	To 40000 -	ns of C(EC c	O2 reductio activities (M	n due to T) 31171
21-22	8	36.05	18.8	52.65	0.68	30000 - 20000 - 10000 - 0 -	7586 2019-20	16392 0 2020-21	2021-22

Innovative Project-1: Geo Polymer Aggregate from fly ash

Developed geo-polymer coarse aggregates using 90% fly ash content as a replacement to natural aggregates for use in building construction.

Technical parameters of the newly developed substance was tested & accepted by the **National Council for Cement and Building Materials (NCCBM).**

Advantages

- 1. Increases fly ash utilization and also saves the environment.
- 2. Reduces requirement of land for ash pond.
- 3. Reduces water consumption and Carbon Emission
- 4. Helps in meeting the estimated demand of aggregates in a country to some extent.

Geo Polymer coarse aggregates: With the aim of increasing utilization of Fly Ash & reducing stress in Ash Dyke, the concept of developing Value added products (Aggregates) from fly ash at RSTPS)

Replicable for all Thermal power plant .

Innovative Project-2: 100 MW Floating Solar PV Plant

Capacity: 100 MW Water surface Area :450 acres on water reservoir Project cost: 423 Cr, Agency: M/s BHEL

COD: 80 MW till 24.03.2022, COD of Balance 20 MW: 01.07.2022
>50 MW Power has been tied up through NVVN and currently the contract is up to 30th Oct'22. (Rate of sale of power: Rs 3.99/kWh).
>50 MW is being sold in Green DAM. Talks is also going on with Railways for PPA of the power.

➤The cost of generation from Solar PV plant is competitive & also shall help in replacing thermal power under Gol flexiblization scheme.

≻100-MW Floating Solar project at Ramagundam, Largest in the segment in the country, is endowed with advance technology as well as environment friendly features.

Benefits:

➢ Total Generation till 30June: 30.23 MUs (PLF: 17.3%), Revenue Earned: Rs 12.76 Cr

E outerstit

> Water Evaporation reduction : 1.1 million m3 per year

2 LMT CO2 emission neutralization per year

Dedicated to the nation by Hon'ble PM Sh. Narendra Modi on 30.07.2022.

Replicable for all Thermal power plants having Water Bodies

Innovative Project-3: Arc-Suit Violation Detection

How our Solution Worked

- Electrical Safety implementation: Violation in use of arc suit during electrical isolation.
- Recognized by use of artificial machine learning technique with alarm to Unit controller

Replicable for all Switchgear Breakers

- Switchgear Breakers are prone to flashovers and person working in these areas must wear arc-suit.
- NTPC Ramagundam has developed in-house state of the art " Arc suit violation detection system.
- This ensures the safety of the manpower and safe operation of switchgear.

Arc-Suit Violation Detection

National Award for 2022 Excellence in Energy Management

• AI based object detection system YOLO is used to identify and classify the object into classes.

- 1. Person not wearing arc suit.
- 2. Person wearing arc suit but not helmet.
- 3. Person wearing all PPE.

✓ Darknet -neural network framework ✓ YOLO – Object Detection Model ✓ Pre-trained models trained on various datasets such as COCO dataset, the KITTI dataset, and the Open Images Dataset.

National Award for 2022 Utilization of renewable energy sources

FY	Technology	Type of energy	Onsite/ offsite	IC (kw)	Gen. (MUs)	% of Electrical Energy used
19-20	PV Plates	Solar	Onsite	10135	14.06	1.18
20-21	PV Plates	Solar	Onsite	10135	14.3	1.27
21-22	PV Plates	Solar	Onsite	90135	34.89	1.10

15

Upo	oming Re	newable Energ	y Projects	r
Name of Project & Location	Project Capacity	Investment made (Rs Million)	Expected Power generation year	
Remaining 20MW Floating Solar PV plant on water reservoir	20/100 MW	4830	2022-23. COD 01.07.22	
Additional 100MW Floating Solar PV plant on water reservoir	100 MW	4800	2024-25	
		- miliatt		

Environmental Management- Ash Utilization

- Use of Fine Fly Ash for **Geo polymer concrete** for road & building construction
- Bottom ash as **replacement of sand** in Mine Stowing, Ash Dyke Raising, Ash Bricks Utilisation
- National Highway construction
- Ensuring Dry Ash system availability. Dry Ash Utilization has increased from 30% to 40%.
- **Customer meets & Industry visits** for increased customer base.

Best Practice of NTPC Ramagundam

Fly Ash Geo polymer road construction at RSTPS

Dry Ash supply Rake

Loading System

Value added products (Aggregates) from fly ash at RSTPS)

National Award for 2022 Excellence in Energy Management 2022

Environmental Management- Ash Utilization

Particulars	UOM	19-20	20-21	21-22
Ash Generated	Tons	3816293	3857530	3938331
Ash Utilization	%	118.23	111.08	140.92
Ash Utilized in manufacturing of cement/concrete – other similar products	%	22.8	19.6	14.87
Ash Utilized in Fly Ash Bricks	%	45.1	59.4	27.40
Ash Utilized in Mine filling	%	21	15	7.95
Ash Utilized for Roads pavements	%	6.9	6	37.92
Ash Utilization in Other Areas – Please mention below	%			
(1) Agriculture Use		9.31	4.67	0
(2) Clay ash brick units		28.04	19.53	10.01
(3) Ash dyke raising/construction		1.62	0	1.60
Expenditure on Ash Utilization (annual)	INR	0	0	0

D::

	Ash Handling done through various methods	
	Ash Handled (Wet Method) %	20
	Ash Handled (Dry Method) %	80
66	Ash Handled (semi wet) %	NA

Environmental Management-Emission

FGD implementation in All units is under process by M/s BHEL/M/s EPIL.

Target date is December-23

- NOX Modifications in Stage-iii (U7 500 MW unit) is awarded to M/s BHEL. Completion target Date is March-2024. •
- ESP R&M for Stage-I Units awarded to M/s BHEL. U1& U3 ESP R&M completed. ESP R&M of unit 2 is scheduled in Sept-• Dec 2022.
- Mass Tree Plantation :1 Lakh nos plantation done in FY 20-21 and FY 21-22. •
- Solid Waste Mgt: Bio Methanation Plant and Vermi composting unit. •
- Geo Tagging of all trees in plant and township. Mini forest development • using Miyawaki method

Tree Planted (Nos.)

Environmental Management-Emission

Absolute Emissions and Emission Intensities									
Particulars			UOM	19-20	D 20	-21	21-22		
Total CO2 Emissions Per	kW of Ger	neration	Ton/kW	0.0007	77 0.00	0766 C	0.000773		
Current SOx Emissions a	ıt Full Load*		mg/Nm3	1625	5 13	93	1350.65		
Current NOx Emissions of	mg/Nm3	394	4.	40	409.13				
Particulate Matter *	mg/Nm3	mg/Nm3 87 73		[′] З	71				
Mercury*			Mg/Nm3	3 0 0		0	0		
		Curren	t Emission	Details					
Parameters	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7		
SOX (mg/Nm3)	1604	1554	1597	1542	1611	1571	S/D		
NOX (mg/Nm3)	688	635	657	669	637	681	S/D		
Opacity (mg/Nm3)	70	81	82	70	75	76	S/D		

D::

National Award for 2022 Excellence in Energy Management **2022**

Environmental Management- Water

DM water consumption (%)			Raw water o	consumptior	n m3/mwhr
19-20	20-21	21-22	19-20	20-21	21-22
0.72	0.82	0.87	3.52	3.27	3.21

Plant has implemented Zero Liquid Discharge

Raw water consumption m3/mwhr

Best Practices in Water Management

- i. Third Party Water Balance Audit of plant Every 3rd Year.
- ii. Target Sp water consumption for FY 2022-23 is 2.9 l/kwhr against Regulatory norms of 3.5 l/kwhr.
- iii. Water dashboard for monitoring of raw water intake to plants.
- iv. Use of Municipal sewage water through STP.
- v. Township rain water harvesting (In use).
- vi. Bottom ash timing optimization based on monitoring leading to ash water ration improvement.
- vii. Ash Water Recirculation system recovers 1500 m3/Hr water from Ash Pond.

Flexibilisation, Maintenance & Reliability, Digitization

Flexibilization

- Pilot study in under progress in association with Denmark Energy Agency Team for flexibilization of one of 500 MW units up to 30% of MCR without oil support.
- 2. Units are being operated with Flexibilization with 1% Ramp Rate and study is going on for achieving 3% Ramp rate.
- 3. Al based State variable control is incorporated in place of conventional PID. For preventing excursion
- 4. 40MWh/10MW BESS and 100 MW floating solar power will be used for bundling of thermal power.

Maintenance & Reliability

- Advanced tools like PM, PdM, REAP, regular vibration measurement of critical equipment & RCM
- 2. Condition monitoring tools & Techniques, WDA of identified critical equipment, Infra-red thermograph and dissolved gas analysis periodically
- 3. 100% Overhauling Performance Index Score before start of OH

Flexibilisation, Maintenance & Reliability, Digitization

Monitory saving due to PdM activities:

Equipment	Description of activity	Benefits	Saving (₹Lakh)
FA pumps and series	Fly ash series motor and pump foundation	Improved reliability of pump & fly ash series	155.0
	strengthened along with the motor base frame		
RW p/p-8 & St-2	Condition monitoring tools & Techniques.	Motor unbalance problem detected before	168.6
CWP-1&2		enhancement. Improved reliability.	

Risk plots and risk grids to decide maintenance priorities

- Risk plot which is a quantitative assessment of risk is a plot of probability
 Vs loss.
- ii. It is plotted on actual partial loss & FO event of equipment/unit etc.
- iii. Top critical components/equipments are segregated using risk plot of 5 years of notifications data from SAP historian.
- iv. Risk Grid is a qualitative tool to capture likelihood of failure of an equipment and potential loss of generation .
- v. Data for risk grid are captured through interaction with maintenance and operation teams.

National Award for 2022 Excellence in Energy Management 2022

Best Practices in Plant

	Status of	Denefite achieved	
Activities	Implementation	Denerits achieved	
	Implemented.	Started 100% Reporting	
Safety	Suraksha app developed	of UA/UC / Near Miss Through	
	for NTPC Ramagundam	App Only	
	Installation of 3TPD capacity	,	
Circular	waste to energy based on	Waste minimization and Circular	
Economy	Torre faction technology for	Economy	
	charcoal production		
		Online Performance Monitoring	
		using PI tools/TLA/SEED.	
Daily	Energy Efficiency	Regular performance testing	
Monitoring	Performance Monitoring	using Off-line instruments and	
system	Tools	gap analysis.	
		Optimized and Efficient Light up	
		plan and HR deviation analysis.	
	Demonstration building		
	construction using geo	Model building using the same is	
Research	Polymer aggregates and	construct in township shopping	
	tiles in shopping complex	complex	
·····			

• 11 A & 1. 2 | | |

KNOWLEDGE SHARING PLATFORM: JYOTHI VANI

- i. JYOTHI VANI learning platform launched on 01.02.2022 by NTPC Ramagundam.
- ii. Participation being received from all NTPC Plants and also many industry experts.
- 60 no. presentations on various topics including Commercial aspects, upcoming regulations latest developments of technology, Lifestyle Diseases & cures and many more.
- iv. All presentations are shared on intranet for future reference.

U4 frequent clinkering issue / bottom ash build up

Energy Management 2022

Problem identification and measurements

- i. Furnace Temperature profiling was done to access the fire ball position inside the furnace.
- ii. From trends it indicated the uneven distribution of Fireball in furnace.
- iii. It is observed that there is insufficient air flow at corner-237.5m and at corner-1 at 40.7m
- iv. Clinkering Tendency & Bottom ash build up was also observed.

Suggested measures

- i. Wind Box DP set point increased to 85 mmwcl
- ii. 7th mill kept in service, coal flow in each mill limited to 53 TPH
- iii. Mill outlet temperature maintained at 75-77 deg C
- iv. Over fire dampers(lower & Upper) position kept at 70% from 100%.
- v. Burner tilt position was changed to to 80/80/90/90.

No clinkering observed after optimizing the parameters. **Fireball position** improved in all four corners

Major Kaizen Projects during 2021-22

Addressing the issue of SR1&2 coal spillage near boom conveyor D/C using retractable skirt board.

NET BENEFIT: RS 20 LAKH PER ANNUM

➢ Reduced availability of equipment.

≻Leads to increase in time of BOBR causes demurrage.

- Slow Bunkering leading to Generation loss.
- ≻Increased Housekeeping problem.

≻High risk of fire due to rubbing of belt.

Award for 2022

Water chemistry management

ional Award tor

- Organo-chloro compounds at high temperature dissociates and form chlorides.
- Due to this CBD opening hours increases resulting operation cost increases
- Chloride ions causes stress corrosion cracking, which leads to Boiler Tube Failure (BTL).
- These organic compounds adsorption on strong base anion resin is not completely reversible process. So, not removed completely at DM Plant.
- An alkaline brine cleaning solution is employed to remove organics and other foulants from anion exchange resins.
- Demineralization plant streams Output between regeneration is increased from 1404 m3 to 1612 m3
- Brine treatment was done in May 2021. After that CBD opening due to high Boiler drum Chlorides is decreased.
- On opening CBD for 1 hour approximately 40 tons of steam is lost.

Month	CBD Opening Hrs		
Jan-2021	48		
Feb-2021	47		
Mar-2021	50		
Apr-2021	49		
May-2021	42		
June-2021	40		
July-2021	38		
Aug-2021	36		
Sep-2021	38		
Oct-2021	34		

Avoided loss of about Rs 2 Cr

Teamwork & Employee Involvement

National Award for 2022

Energy Efficiency through Team Work:

a. Energy Efficiency/Awareness Training Programs

- 1. Commercial impacts of Efficiency improvement was organized by NTPC Ramagundam in 2017, 2019 & 2021.
- 2. Handhold onsite training workshop for 50 executives from other NTPC stations in Dec 2021.
- 3. In addition, participants from Telangana State Gencos & IPPs viz. Vendata, Jharsuguda were allowed to participate.

b. IOT Systems Installed

- 1. Implementation of face recognition punching system.
- 2. Smart Lighting system with occupancy sensor in offices
- 3. Development of mobile app for monitoring O&M performance
- 3. Smart wireless water consumption mapping for optimizing the water use
- 4. Implementation of Contract Labor Integrated Management System (CLIMS)

5. Artificial Intelligence for finding violation in use of arc suit violation

<u>c. The projects implemented through</u> Kaizen

 Installation of Air receiver tank for removal of moisture in STG-1 Units as Control valves/ Dampers are not maintaining accurately as per command
 Addressing the issue of SR1&2 coal spillage near boom conveyor D/C using retractable skirt board.

¢₽₽è

D::

• • Ä

Teamwork & Employee Involvement

National Award for 2022 Excellence in Energy Management 2022

Monitoring and reporting system to review SEC on

(online/daily/monthly/annual) basis

- Performance optimization groups (POG) are the cross functional groups constituted for the purpose of ECR reduction, Water use optimization, APC optimization
- Online Heat Rate (HR) Monitoring through PI, TLA, and real time DDCMIS data. By 11. EEMG dept in assocciation with C&I and Operation dept
- Auxiliary Power Consumption (APC) monitoring through OLEMS (Online Energy Energy Ш. Management System). Electrical Maintenance Dept
- Equipment wise Specific Energy Consumption monitoring through SEED (System Energy IV. Efficiency Display), developed In-house. IT dept
- ٧. In addition to above online/realtime monitoring system OFFLINE testing using Wireless instruments are being done as per Efficiency Management guidelines i. Boiler Efficiency testing & Air pre Heater Performance testing ii. Turbine Heat rate Testing & Heater performance testing
 - iii. Condenser Performance testing & Cooling Tower capability testing

Cumulative Capital Budget for EnCon Proje (Rs Lakh)

		Energy Efficiency Per	formance Monitoring System	1	
Meetings		When	Headed By		
Planning Meeting		Daily	O&M Head	Corrective actions generated from monitori & review meetings implemented in	
Operational Review Team Meeting		Monthly	Plant Head		
Regional Management Committee		Quarterly	Regional executive Director	Operational and Maintenance Practices	
Ē	Regional Operational Performance Review	Half Yearly	🗯 Director Opera tion s		
١		atit -			

ISO Certifications

EYOND INDIA@7

- Assessment and review to mitigate the challenges ahead and Involvement of employees & interested parties
- II. Formulation of Baseline performance data of Energy performance indicators (EnPI) like Heat Rate, Auxiliary Power, Oil consumption.
- III. Comply with all applicable legal and other requirements related to energy management.

ISO Ref: Clause 5.2

- IV. Energy use/carbon emissions reduction in systematic way.
- V. Demonstrate to stakeholders the corporate commitment to comply with their best practice to protect the environment.

EnCon Project budget allocation(FY 2021-22)

Total turnover of the company/plant : 60020.5 (Rs. Million) Amount invested in EnCon Projects : 3.24 (Rs. Million) Investment: 0.056 %

एनरीपीसी NTPC	Energy Management System ENERGY AND EFFICIENCY MANAGEMENT GROUP		Ramagundam
Section No: 4	TITLE	Revision N	o: 01
Page: 17 of 51	Energy Management System Policy	Rev. Date:	22.07.20

ENERGY MANAGEMENT SYSTEM POLICY OF NTPC RAMAGUNDAM

NTPC Ramagundam is committed to the Generation and Delivery of Quality, Reliable & Cheaper Power to the satisfaction of Customers and other Stakeholders, through Systems and Processes, in line with our Vision, Mission and Core Values.

ead Office: 52A, Adi Shankaracharya Marg, Opp.Powai Lake, Powai, Mumbai - 400 072, India.

+ + + +

Learning from CII Energy Award 2021

30

S.N	Particulars	Area of benefits	Implementatio n Status	Savings/ annum
1	Converting the admin Building at RSTPS as the "Net Zero Building"	 a. Offsetting Energy Conservation and Emmissions. b. Onsite Energy generation thru Renewable Energy c. Rain water harvesting 	Proposal under consideration	5.2 Millions Metric tons of CO2 /year
2	Use of Solar Light pipe Roof top Solar with BEES System	 a. Electricity generation b. Reduces carbon footprint. c. No additional space required for installation. 	140 KW installed. Another 900 KW under proposal	7.8 Millions Metric tons of CO2/year
3	Use of Soft starter in motors	 a. Frequent start /stop of CT Fans and ash slurry pumps as per optimization for energy conservation 	60 Nos CT Fans under implementation	0.5 MUs of saving

D::

FINANCIAL PERFORMANCE

3

2

1

0

1.5

0.5

2.5

Average cost of Generation (Rs/Kwh)

1. 1. 5 T

Profit / Unit (Rs/kWh)

	<u> </u>	<u> </u>	
			₹ Crore
S.N	OPERATION PROFITABILITY	FY 20-21	FY 21-22
1	Marginal Contribution aftr sharing	47.92	63.42
2	Gains due to sharing of SCED	11.85	5.93
3	Net DSM Gain	3.70	3.78
4	SG Incentive	0.86	6.62
5	RRAS Mark Up	2.35	0.99
6	Retaining 25% of ECR for RRAS Down	7.62	6.82
7	PTX & RTM Gains	1.03	1.24
8	O&M Cost	46.52	50.24
9	TOTAL	121.86	139.04
マデ		•	D ::

TOTAL PROFIT OF NTPC RAMAGUNDAM IN FY 21-22: Rs 692.35 Cr

31

De

tr A

Awards & Accolades

PRESIDENT

APEX INDIA FOUNDATION

(1111)

D::

Etter.

National Award for 2022

Email: hopramagundam@ntpc.co.in Website: www.ntpc.co.in

/ntpclimited

